Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1987822

ABSTRACT

The cornea is an avascular connective tissue that is crucial, not only as the primary barrier of the eye but also as a proper transparent refractive structure. Corneal transparency is necessary for vision and is the result of several factors, including its highly organized structure, the physiology of its few cellular components, the lack of myelinated nerves (although it is extremely innervated), the tightly controlled hydration state, and the absence of blood and lymphatic vessels in healthy conditions, among others. The avascular, immune-privileged tissue of the cornea is an ideal model to study the interactions between its well-characterized and dense sensory nerves (easily accessible for both focal electrophysiological recording and morphological studies) and the low number of resident immune cell types, distinguished from those cells migrating from blood vessels. This paper presents an overview of the corneal structure and innervation, the resident dendritic cell (DC) subpopulations present in the cornea, their distribution in relation to corneal nerves, and their role in ocular inflammatory diseases. A mouse model in which sensory axons are constitutively labeled with tdTomato and DCs with green fluorescent protein (GFP) allows further analysis of the neuro-immune crosstalk under inflammatory and steady-state conditions of the eye.


Subject(s)
Cornea , Neuroimmunomodulation , Animals , Cornea/innervation , Dendritic Cells , Mice , Models, Theoretical
2.
Ocul Surf ; 23: 40-48, 2022 01.
Article in English | MEDLINE | ID: covidwho-1573810

ABSTRACT

PURPOSE: To describe the association between Sars-CoV-2 infection and small fiber neuropathy in the cornea identified by in vivo corneal confocal microscopy. METHODS: Twenty-three patients who had overcome COVID-19 were recruited to this observational retrospective study. Forty-six uninfected volunteers were also recruited and studied as a control group. All subjects were examined under in vivo confocal microscopy to obtain images of corneal subbasal nerve fibers in order to study the presence of neuroma-like structures, axonal beadings and dendritic cells. The Ocular Surface Disease Index (OSDI) questionnaire and Schirmer tear test were used as indicators of Dry Eye Disease (DED) and ocular surface pathology. RESULTS: Twenty-one patients (91.31%) presented alterations of the corneal subbasal plexus and corneal tissue consistent with small fiber neuropathy. Images from healthy subjects did not indicate significant nerve fiber or corneal tissue damage. Eight patients reported increased sensations of ocular dryness after COVID-19 infection and had positive DED indicators. Beaded axons were found in 82.60% of cases, mainly in patients reporting ocular irritation symptoms. Neuroma-like images were found in 65.22% patients, more frequently in those with OSDI scores >13. Dendritic cells were found in 69.56% of patients and were more frequent in younger asymptomatic patients. The presence of morphological alterations in patients up to 10 months after recovering from Sars-CoV-2 infection points to the chronic nature of the neuropathy. CONCLUSIONS: Sars-CoV-2 infection may be inducing small fiber neuropathy in the ocular surface, sharing symptomatology and morphological landmarks with DED and diabetic neuropathy.


Subject(s)
COVID-19 , Dry Eye Syndromes , Small Fiber Neuropathy , Cornea , Humans , Microscopy, Confocal , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL